This is the 21st article in the award-winning “Real Words or Buzzwords?” series about how real words become empty words and stifle technology progress, also published on SecurityInfoWatch.com.
By Ray Bernard, PSP, CHS-III
Across the physical security industry, the label “situational awareness” has been applied to products and systems that weren’t advanced enough to provide the capabilities truly needed.
All-in-one RWOB
MAXIMIZE YOUR SECURITY OPERATIONS CAPABILITIES
Upgrade your security operations effectiveness through Security Technology Strategic Planning. Provably get more for your company's security technology investment.
★ ★ ★ GET NOTIFIED! ★ ★ ★
SIGN UP to be notified by email the day a new Real Words or Buzzwords? article is posted!
Real Words or Buzzwords?
The Award-Winning Article Series
#1 Proof of the buzzword that killed tech advances in the security industry—but not other industries.
#2 Next Generation (NextGen): A sure way to tell hype from reality.
#3 Customer Centric: Why all security industry companies aren't customer centric.
#4 Best of Breed: What it should mean to companies and their customers.
#5 Open: An openness scale to rate platforms and systems
#6 Network-friendly: It's much more than network connectivity.
#7 Mobile first: Not what it sounds like.
#8 Enterprise Class (Part One): To qualify as Enterprise Class system today is world's beyond what it was yesterday.
#9 Enterprise Class (Part Two): Enterprise Class must be more than just a top-level label.
#10 Enterprise Class (Part Three): Enterprise Class must be 21st century technology.
#11 Intuitive: It’s about time that we had a real-world testable definition for “intuitive”.
#12 State of the Art: A perspective for right-setting our own thinking about technologies.
#13 True Cloud (Part One): Fully evaluating cloud product offerings.
#14 True Cloud (Part Two): Examining the characteristics of 'native-cloud' applications.
#15 True Cloud (Part Three): Due diligence in testing cloud systems.
#16 IP-based, IP-enabled, IP-capable, or IP-connectable?: A perspective for right-setting our own thinking about technologies.
#17 Five Nines: Many people equate high availability with good user experience, yet many more factors are critically important.
#18 Robust: Words like “robust” must be followed by design specifics to be meaningful.
#19 Serverless Computing – Part 1: Why "serverless computing" is critical for some cloud offerings.
#20 Serverless Computing – Part 2: Why full virtualization is the future of cloud computing.
#21 Situational Awareness – Part 1: What products provide situational awareness?
#22 Situational Awareness – Part 2: Why system designs are incomplete without situational awareness?
#23 Situational Awareness – Part 3: How mobile devices change the situational awareness landscape?
#24 Situational Awareness – Part 4: Why situational awareness is a must for security system maintenance and acceptable uptime.
#25 Situational Awareness – Part 5: We are now entering the era of smart buildings and facilities. We must design integrated security systems that are much smarter than those we have designed in the past.
#26 Situational Awareness – Part 6: Developing modern day situational awareness solutions requires moving beyond 20th century thinking.
#27 Situational Awareness – Part 7: Modern day incident response deserves the help that modern technology can provide but doesn’t yet. Filling this void is one of the great security industry opportunities of our time.
#28 Unicity: Security solutions providers can spur innovation by envisioning how the Unicity concept can extend and strengthen physical access into real-time presence management.
#29 The API Economy: Why The API Economy will have a significant impact on the physical security industry moving forward.
#31 The Built Environment: In the 21st century, “the built environment” means so much more than it did just two decades ago.
#32 Hyper-Converged Infrastructure: Hyper-Converged Infrastructure has been a hot phrase in IT for several years, but do its promises hold true for the physical security industry?
#33 Software-Defined: Cloud-computing technology, with its many software-defined elements, is bringing self-scaling real-time performance capabilities to physical security system technology.
#34 High-Performance: How the right use of "high-performance" can accelerate the adoption of truly high-performing emerging technologies.
#35 Erasure Coding: Why RAID drive arrays don’t work anymore for video storage, and why Erasure Coding does.
#36 Presence Control: Anyone responsible for access control management or smart building experience must understand and apply presence control.
#37 Internet+: The Internet has evolved into much more than the information superhighway it was originally conceived to be.
#38 Digital Twin: Though few in physical security are familiar with the concept, it holds enormous potential for the industry.
#39 Fog Computing: Though commonly misunderstood, the concept of fog computing has become critically important to physical security systems.
#40 Scale - Part 1: Although many security-industry thought leaders have advocated that we should be “learning from IT,” there is still insufficient emphasis on learning about IT practices, especially for large-scale deployments.
#41 Scale - Part 2: Why the industry has yet to fully grasp what the ‘Internet of Things’ means for scaling physical security devices and systems.
#42 Cyberspace - Part 1: Thought to be an outdated term by some, understanding ‘Cyberspace’ and how it differs from ‘Cyber’ is paramount for security practitioners.
#43 Cyber-Physical Systems - Part 1: We must understand what it means that electronic physical security systems are cyber-physical systems.
#44 Cyberspace - Part 2: Thought to be an outdated term by some, understanding ‘Cyberspace’ and how it differs from ‘Cyber’ is paramount for security practitioners.
#45 Artificial Intelligence, Machine Learning and Deep Learning: Examining the differences in these technologies and their respective benefits for the security industry.
#46 VDI – Virtual Desktop Infrastructure: At first glance, VDI doesn’t seem to have much application to a SOC deployment. But a closer look reveals why it is actually of critical importance.
#47 Hybrid Cloud: The definition of hybrid cloud has evolved, and it’s important to understand the implications for physical security system deployments.
#48 Legacy: How you define ‘legacy technology’ may determine whether you get to update or replace critical systems.
#49 H.264 - Part 1: Examining the terms involved in camera stream configuration settings and why they are important.
#50 H.264 - Part 2: A look at the different H.264 video frame types and how they relate to intended uses of video.
#51 H.264 - Part 3: Once seen as just a marketing term, ‘smart codecs’ have revolutionized video compression.
#52 Presence Technologies: The proliferation of IoT sensors and devices, plus the current impacts of the COVID-19 pandemic, have elevated the capabilities and the importance of presence technologies.
#53 Anonymization, Encryption and Governance: The exponential advance of information technologies requires an exponential advance in the application of data protection.
#54 Computer Vision: Why a good understanding of the computer vision concept is important for evaluating today’s security video analytics products.
#55 Exponential Technology Advancement: The next 10 years of security technology will bring more change than in the entire history of the industry to now.
#56 IoT and IoT Native: The next 10 years of security technology will bring more change than in the entire history of the industry to now.
#57 Cloud Native IoT: A continuing look at what it means to have a 'True Cloud' solution and its impact on today’s physical security technologies.
#58 Bluetooth vs. Bluetooth LE: The next 10 years of security technology will bring more change than in the entire history of the industry to now.
#59 LPWAN - Low-Power Wide Area Networks: Emerging IoT smart sensor devices and systems are finding high-ROI uses for building security and safety.
#60 Edge Computing and the Evolving Internet: Almost 15 billion personal mobile devices and over 22 billion IoT devices operating daily worldwide have shifted the Internet’s “center of gravity” from its core to its edge – with many implications for enterprise physical security deployments
#61 Attack Surface: (Published as a Convergence Q&A Column article)An attack surface is defined as the total number of all possible entry points for unauthorized access into any system.
#62 Autonomous Compute Infrastructure: We’re on the brink of a radical new approach to technology, driven by autonomous operations.
#63 Physical Security Watershed Moment: We have reached a juncture in physical security technology that is making most of our past thinking irrelevant.
#64 Access Chaos: For 50 years we have had to live with physical access control systems that were not manageable at any large scale.
#65 AI and Automatiom: Will engineering talent, business savvy and capital investment from outside the physical security industry bring technology startups that transform reactive security to proactive and preventive security operations?
#66 Interoperability: Over the next five years, the single greatest determinant of the extent to which existing security industry companies will thrive or die is interoperability.
#67 AI Model : One key factor affects the accuracy, speed and computational requirements of AI
#68 Interoperability – Part 2: There are two types of security system interoperability – both of which are important considerations in the design of security systems and the selection of security system products.
#69 Interoperability – Part 3: There are two types of security system interoperability – both of which are important considerations in the design of security systems and the selection of security system products.
#70 Operationalizing AI: AI is not a product, but a broad category of software that enables products and systems to do more than ever before possible. How do we put it to good use?
#71 Shallow IT Adoption – Part 1: It’s not just about being IT compliant, it’s also about leveraging IT capabilities to properly serve the needs and wants of today’s technologically savvy customers.
#72 E-waste – an important security system design issue: Now e-waste is an important design issue not just because of growing e-waste regulations, but because educated designers can save enterprise security system customers a lot of money.
#73 LRPoE - Long Reach Power over Ethernet: A dozen factors have improved the business attractiveness of network cameras, making it more desirable to place cameras further from existing IT closets than the 328 foot limitation of standard Ethernet cable.
#74 NIST Declares Physical Access Control Systems are OT: Does it really mean anything that OT has joined the parade of labels (IT, IoT, and then IIoT) variously getting applied to security systems?
#75 Future Ready: Google sees the term "future-ready" trending up across many subject domains. But does that term apply to the physical security industry and its customers?
#76 Data KLiteracy: AI needs data. Thus, the ability of any department or division in an organization (including security) to use AI effectively depends on its ability to effectively obtain and utilize data – including security.
#77 Security Intelligence (upcoming): AI brings two kinds of intelligence to physical security systems – people bring the third.
More to come about every other week.
The transition from analog to digital technology and the resulting advances in security product capabilities, have forever changed the physical security technology landscape. It is not feasible to rip and replace physical security systems across an entire global or national enterprise. A new design approach is needed to enable end user customers to develop an evolvable intelligent technology infrastructure (illustrated here), one that provides the operational capabilities needed to respond to changing risks and changing organizations. An important part of that technology infrastructure should be situational awareness capabilities.
The Search for Situational Awareness
Years ago, it became apparent that the era of accelerating technology advancement had arrived. Data mining, machine learning and advanced analytics techniques had emerged in manufacturing operations, business management and other sectors. Seeing this, I was prompted to search for a physical security “situational awareness platform” that could live up to its name. Over the past two years, numerous vendors have promoted their offerings as situational awareness platforms or solutions, yet all the scenarios and examples I have been shown fell far short of my end-user clients’ security operations’ needs.
Security Operations Center (SOC) staff would process alarms, and Emergency Operations Center (EOC) teams would consume risk information feeds and geographical map information, but the burden was almost entirely on the staff to assess and define the situation, coordinate responses, and deal with communicating the unfolding situation. There was minimal support from security technology platforms, apart from active video surveillance and review of video recordings. A considerable amount of human effort was involved in managing incident response. The security system tools did not encompass response team and resource management, even on a small scale. The burden of situational awareness would transfer quickly from technology platforms to individual operators, where human capabilities can only go so far.
For example, small incidents, like two trespassers on facility grounds or door forced open alarms, were easily dealt with. After viewing a video display automatically triggered by the alarms, a security officer would be dispatched to respond the alarms. Video systems would provide tracking to help officer response to situations like a terminated employee gaining unauthorized building access by tailgating. However, on close examination, it could be seen in these incidents that the actual situation wouldn’t be understood until an officer directly observed or engaged in dialogue with one or more threat actors, which can be a very risky approach.
Can True Situational Awareness Be Achieved?
I’m not saying that current-day video system and other technology capabilities are not impressive and critically important. They are. However, my observation of the use of situational awareness technologies was that for most incidents, “alarm awareness with remote observation via video” would have been a more fitting description than “situational awareness”. Situational awareness usually occurred mid- or post-incident. When the responding officer achieved situational awareness, it often couldn’t be communicated, because even brief radio use would interrupt effective handling of the offenders being confronted. When a multi-person or multi-team response was required, achieving real-time situational awareness at the operational level was rarely possible.
In the preface to their 2011 book, Designing for Situation Awareness: an Approach to User Centered Design, Second Edition, authors Mica R. Endsley and Debra G. Jones describe a situation that prevails across many industries and management domains, not just physical security: “While a clear understanding of one’s situation is undoubtedly the critical trigger that allows the knowledge, skills, and creativity of the human mind to be successfully brought to bear in shaping our environment, very often people must work uphill, against systems and technologies that block rather than enhance their ability to ascertain the information they need. Knowledge in a vacuum is meaningless. Its use in overcoming human problems and achieving human goals requires the successful application of that knowledge in ways that are contextually appropriate. Yet, across a wide variety of engineered systems, people face an ever-widening information gap—the gulf between the data that is available and the information that they really need to know.”
In physical security, it isn’t quite the case that technology blocks the ability to obtain information, rather it is that product and system capabilities are insufficient to obtain and share the information needed. I believe that this primarily results from a poor concept of what situational awareness means in the context of security operations. The label “situational awareness” has been applied to products and systems that weren’t advanced enough to provide the capabilities truly needed.
In the physical security industry, the adoption of information technologies to provide situational awareness functionality has to date been done mostly using a technology-centered approach, rather than a human-centered approach. If you doubt this, perform an Internet search on “Total Situational Awareness” and check the results; the articles relevant to physical security are centered around technologies.
Can We Truly Achieve Situational Awareness?
Wikipedia provides an excellent article on the topic, which opens with this definition: “Situational Awareness or Situation Awareness (SA) is the perception of environmental elements and events with respect to time or space, the comprehension of their meaning, and the projection of their status after some variable has changed, such as time, or some other variable, such as a predetermined event.” That’s a very high-level conceptual definition. However, the article then proceeds to present a look at the full landscape of situational awareness, including a good diagram of the factors involved in a human-centered approach to achieving situational awareness.
The next article (Part Two) on Situational Awareness will provide an operations-level definition for “situational awareness” that fits security and emergency response requirements. It will apply the diagram (of a human-centered approach) to specific risk scenarios. And it will reference materials that include 16 risk-specific examples that illustrate the breadth of requirements for security situational awareness and incident management. You’ll be able to take this knowledge and understanding with you to the next security trade show you attend.
Ray Bernard, PSP CHS-III, is the principal consultant for Ray Bernard Consulting Services (RBCS), a firm that provides security consulting services for public and private facilities (www.go-rbcs.com). He is the author of the Elsevier book Security Technology Convergence Insights available on Amazon. Mr. Bernard is a Subject Matter Expert Faculty of the Security Executive Council (SEC) and an active member of the ASIS International member councils for Physical Security and IT Security.