This is the second article in the award-winning “Real Words or Buzzwords?” series about how real words become empty words and stifle technology progress, also published on SecurityInfoWatch.com.
By Ray Bernard, PSP, CHS-III
As use of the Next Generation term grew in the security industry, it created a problem. A company failing to label its next version of products as “Next Generation” risked creating the impression that its research and development efforts were significantly lagging those of competing companies. Thus, nearly all companies showcased “Next Generation” products regardless of how worthy they were of that label. Thus, the term generally became a meaningless buzzword in our industry, but not in all cases.
All-in-one RWOB
MAXIMIZE YOUR SECURITY OPERATIONS CAPABILITIES
Upgrade your security operations effectiveness through Security Technology Strategic Planning. Provably get more for your company's security technology investment.
★ ★ ★ GET NOTIFIED! ★ ★ ★
SIGN UP to be notified by email the day a new Real Words or Buzzwords? article is posted!
Real Words or Buzzwords?
The Award-Winning Article Series
#1 Proof of the buzzword that killed tech advances in the security industry—but not other industries.
#2 Next Generation (NextGen): A sure way to tell hype from reality.
#3 Customer Centric: Why all security industry companies aren't customer centric.
#4 Best of Breed: What it should mean to companies and their customers.
#5 Open: An openness scale to rate platforms and systems
#6 Network-friendly: It's much more than network connectivity.
#7 Mobile first: Not what it sounds like.
#8 Enterprise Class (Part One): To qualify as Enterprise Class system today is world's beyond what it was yesterday.
#9 Enterprise Class (Part Two): Enterprise Class must be more than just a top-level label.
#10 Enterprise Class (Part Three): Enterprise Class must be 21st century technology.
#11 Intuitive: It’s about time that we had a real-world testable definition for “intuitive”.
#12 State of the Art: A perspective for right-setting our own thinking about technologies.
#13 True Cloud (Part One): Fully evaluating cloud product offerings.
#14 True Cloud (Part Two): Examining the characteristics of 'native-cloud' applications.
#15 True Cloud (Part Three): Due diligence in testing cloud systems.
#16 IP-based, IP-enabled, IP-capable, or IP-connectable?: A perspective for right-setting our own thinking about technologies.
#17 Five Nines: Many people equate high availability with good user experience, yet many more factors are critically important.
#18 Robust: Words like “robust” must be followed by design specifics to be meaningful.
#19 Serverless Computing – Part 1: Why "serverless computing" is critical for some cloud offerings.
#20 Serverless Computing – Part 2: Why full virtualization is the future of cloud computing.
#21 Situational Awareness – Part 1: What products provide situational awareness?
#22 Situational Awareness – Part 2: Why system designs are incomplete without situational awareness?
#23 Situational Awareness – Part 3: How mobile devices change the situational awareness landscape?
#24 Situational Awareness – Part 4: Why situational awareness is a must for security system maintenance and acceptable uptime.
#25 Situational Awareness – Part 5: We are now entering the era of smart buildings and facilities. We must design integrated security systems that are much smarter than those we have designed in the past.
#26 Situational Awareness – Part 6: Developing modern day situational awareness solutions requires moving beyond 20th century thinking.
#27 Situational Awareness – Part 7: Modern day incident response deserves the help that modern technology can provide but doesn’t yet. Filling this void is one of the great security industry opportunities of our time.
#28 Unicity: Security solutions providers can spur innovation by envisioning how the Unicity concept can extend and strengthen physical access into real-time presence management.
#29 The API Economy: Why The API Economy will have a significant impact on the physical security industry moving forward.
#31 The Built Environment: In the 21st century, “the built environment” means so much more than it did just two decades ago.
#32 Hyper-Converged Infrastructure: Hyper-Converged Infrastructure has been a hot phrase in IT for several years, but do its promises hold true for the physical security industry?
#33 Software-Defined: Cloud-computing technology, with its many software-defined elements, is bringing self-scaling real-time performance capabilities to physical security system technology.
#34 High-Performance: How the right use of "high-performance" can accelerate the adoption of truly high-performing emerging technologies.
#35 Erasure Coding: Why RAID drive arrays don’t work anymore for video storage, and why Erasure Coding does.
#36 Presence Control: Anyone responsible for access control management or smart building experience must understand and apply presence control.
#37 Internet+: The Internet has evolved into much more than the information superhighway it was originally conceived to be.
#38 Digital Twin: Though few in physical security are familiar with the concept, it holds enormous potential for the industry.
#39 Fog Computing: Though commonly misunderstood, the concept of fog computing has become critically important to physical security systems.
#40 Scale - Part 1: Although many security-industry thought leaders have advocated that we should be “learning from IT,” there is still insufficient emphasis on learning about IT practices, especially for large-scale deployments.
#41 Scale - Part 2: Why the industry has yet to fully grasp what the ‘Internet of Things’ means for scaling physical security devices and systems.
#42 Cyberspace - Part 1: Thought to be an outdated term by some, understanding ‘Cyberspace’ and how it differs from ‘Cyber’ is paramount for security practitioners.
#43 Cyber-Physical Systems - Part 1: We must understand what it means that electronic physical security systems are cyber-physical systems.
#44 Cyberspace - Part 2: Thought to be an outdated term by some, understanding ‘Cyberspace’ and how it differs from ‘Cyber’ is paramount for security practitioners.
#45 Artificial Intelligence, Machine Learning and Deep Learning: Examining the differences in these technologies and their respective benefits for the security industry.
#46 VDI – Virtual Desktop Infrastructure: At first glance, VDI doesn’t seem to have much application to a SOC deployment. But a closer look reveals why it is actually of critical importance.
#47 Hybrid Cloud: The definition of hybrid cloud has evolved, and it’s important to understand the implications for physical security system deployments.
#48 Legacy: How you define ‘legacy technology’ may determine whether you get to update or replace critical systems.
#49 H.264 - Part 1: Examining the terms involved in camera stream configuration settings and why they are important.
#50 H.264 - Part 2: A look at the different H.264 video frame types and how they relate to intended uses of video.
#51 H.264 - Part 3: Once seen as just a marketing term, ‘smart codecs’ have revolutionized video compression.
#52 Presence Technologies: The proliferation of IoT sensors and devices, plus the current impacts of the COVID-19 pandemic, have elevated the capabilities and the importance of presence technologies.
#53 Anonymization, Encryption and Governance: The exponential advance of information technologies requires an exponential advance in the application of data protection.
#54 Computer Vision: Why a good understanding of the computer vision concept is important for evaluating today’s security video analytics products.
#55 Exponential Technology Advancement: The next 10 years of security technology will bring more change than in the entire history of the industry to now.
#56 IoT and IoT Native: The next 10 years of security technology will bring more change than in the entire history of the industry to now.
#57 Cloud Native IoT: A continuing look at what it means to have a 'True Cloud' solution and its impact on today’s physical security technologies.
#58 Bluetooth vs. Bluetooth LE: The next 10 years of security technology will bring more change than in the entire history of the industry to now.
#59 LPWAN - Low-Power Wide Area Networks: Emerging IoT smart sensor devices and systems are finding high-ROI uses for building security and safety.
#60 Edge Computing and the Evolving Internet: Almost 15 billion personal mobile devices and over 22 billion IoT devices operating daily worldwide have shifted the Internet’s “center of gravity” from its core to its edge – with many implications for enterprise physical security deployments
#61 Attack Surface: (Published as a Convergence Q&A Column article)An attack surface is defined as the total number of all possible entry points for unauthorized access into any system.
#62 Autonomous Compute Infrastructure: We’re on the brink of a radical new approach to technology, driven by autonomous operations.
#63 Physical Security Watershed Moment: We have reached a juncture in physical security technology that is making most of our past thinking irrelevant.
#64 Access Chaos: For 50 years we have had to live with physical access control systems that were not manageable at any large scale.
#65 AI and Automatiom: Will engineering talent, business savvy and capital investment from outside the physical security industry bring technology startups that transform reactive security to proactive and preventive security operations?
#66 Interoperability: Over the next five years, the single greatest determinant of the extent to which existing security industry companies will thrive or die is interoperability.
#67 AI Model : One key factor affects the accuracy, speed and computational requirements of AI
#68 Interoperability – Part 2: There are two types of security system interoperability – both of which are important considerations in the design of security systems and the selection of security system products.
#69 Interoperability – Part 3: There are two types of security system interoperability – both of which are important considerations in the design of security systems and the selection of security system products.
#70 Operationalizing AI: AI is not a product, but a broad category of software that enables products and systems to do more than ever before possible. How do we put it to good use?
#71 Shallow IT Adoption – Part 1: It’s not just about being IT compliant, it’s also about leveraging IT capabilities to properly serve the needs and wants of today’s technologically savvy customers.
#72 E-waste – an important security system design issue: Now e-waste is an important design issue not just because of growing e-waste regulations, but because educated designers can save enterprise security system customers a lot of money.
#73 LRPoE - Long Reach Power over Ethernet: A dozen factors have improved the business attractiveness of network cameras, making it more desirable to place cameras further from existing IT closets than the 328 foot limitation of standard Ethernet cable.
#74 NIST Declares Physical Access Control Systems are OT: Does it really mean anything that OT has joined the parade of labels (IT, IoT, and then IIoT) variously getting applied to security systems?
#75 Future Ready: Google sees the term "future-ready" trending up across many subject domains. But does that term apply to the physical security industry and its customers?
#76 Data KLiteracy: AI needs data. Thus, the ability of any department or division in an organization (including security) to use AI effectively depends on its ability to effectively obtain and utilize data – including security.
#77 Security Intelligence (upcoming): AI brings two kinds of intelligence to physical security systems – people bring the third.
More to come about every other week.
However, that is not always the case . . .
Next Generation Technology Advances
The term is not always without meaning, and when applied to a class of technology, such as “Next Generation Wireless”, it usually does refer to a significant advance in specific capabilities, sometimes due to a change in the very nature of the technology. A good example is the recently arrived next generation of security video analytics, which has astounding capabilities because the technology has gone truly digital.
A technical paper that I wrote for the Security Industry Association (SIA), describes it in detail: The State of Security Video Analytics. You can read the paper online or download it in PDF format. It clearly defines the differences between the previous generation of video analytics, and the new generation. I am aware of several companies currently providing Next Generation video analytics products. It is a 19-page technical paper, but is fairly easy to read, partly because each aspect of what makes the technology “next-generation” is depicted in illustrations.
The Next Generation Rule
Here is a good rule to apply: a claim of having a Next Generation product is generally just buzzword usage, unless there is also a clear description available of what the previous generation’s technology was, what the new generation product’s technology is, and how the difference between them provides significantly greater capabilities and/or cost reductions, sufficient to justify the Next Generation claim.
For example, on the ASIS 2016 Annual Seminars & Exhibits show floor, at the Bosch Security booth, I saw a demonstration of Bosch’s next generation video analytics technology. I saw how it forever eliminates having to manually create motion masks for tree, shrubbery, cloud motion and so on.The machine learning capability of the camera’s analytics software automatically figures out what is in the scene and distinguishes between objects of interest and “scene background”.
In the demonstrations that I saw, the camera even determined that the heavily falling snow was part of the scene and should not trigger motion events. Self-configuring analytics is a significant technology advancement, worthy of the Next Generation label, both technically and for its valuable security operations benefits. Backing up the validation of “Next Generation” status is a statement in a 2013 Bosch press release, explaining that the Bosch Automotive Group (which provides 90% of the software for Google’s autonomous driving initiative), has been sharing its video analytics technology with the Bosch Security Group.
Applying the NextGen Rule to Products
A manufacturer should be able to describe how its Next Generation product technology came into being, with a factual story that makes sense, whether developed internally, in partnership with another company, or obtained from a 3rd party source. The differences between the previous generation and the new generation of product should be understandable. In the absence of general consensus about a product’s Next Generation status, you can and should make your own conclusion as to whether the claim is valid. However, more important than Next Generation status is the value of the technology improvements to your own risk mitigation goals and security operations objectives.
Hold Companies Accountable for Their Claims
If we want to improve our industry, we should hold companies accountable for Next Generation claims. If what they mean is simply “the next product in our sequence of product development”, they are using the regular definition of “generation”, not the definition of “next generation” as a phrase. Merriam-Webster defines provides an example of the generation definition appropriate to our industry context:
a type or class of objects usually developed from an earlier type <first of the … new generation of powerful supersonic fighters — Kenneth Koyen>
The term Next Generation shouldn’t be without meaning. We should insist if companies are going to use the term to impress or persuade us, that they know what they are talking about, and don’t waste their breath or ink, and our time!
Ray Bernard, PSP CHS-III, is the principal consultant for Ray Bernard Consulting Services (RBCS), a firm that provides security consulting services for public and private facilities (www.go-rbcs.com). Mr. Bernard is a Subject Matter Expert Faculty of the Security Executive Council and an active member of the ASIS International member councils for Physical Security and IT Security.